
Towards Distributed Multi-agent Optimization
in a Stochastic Derivative-free Setting

Jeffrey Larson

Argonne National Laboratory

February 17, 2014

Background

2012: Ph.D. in Applied Mathematics from University of Colorado Denver

I Dissertation: Derivative-free Optimization of Noisy Functions

2012 - 2014: Postdoctoral Researcher, Department of Automatic Control,
KTH Royal Institute of Technology

Present: Postdoctoral Researcher, Mathematics and Computer Science,
Argonne National Laboratory

I Derivative-free Optimization

I Distributed Multi-agent Optimization

I Heavy-duty Vehicle Platooning

I Sports Scheduling

I Tiled QR Factorization

2 of 51.

Background

2012: Ph.D. in Applied Mathematics from University of Colorado Denver

I Dissertation: Derivative-free Optimization of Noisy Functions

2012 - 2014: Postdoctoral Researcher, Department of Automatic Control,
KTH Royal Institute of Technology

Present: Postdoctoral Researcher, Mathematics and Computer Science,
Argonne National Laboratory

I Derivative-free Optimization

I Distributed Multi-agent Optimization

I Heavy-duty Vehicle Platooning

I Sports Scheduling

I Tiled QR Factorization

2 of 51.

Contents

Stochastic Derivative-free Optimization
Common Approaches
Our Method
Outline of Convergence Proof
Numerical Results

Distributed Multi-agent Optimization
Common Approaches
Our Algorithm
Outline of Convergence Proof
Numerical Results

3 of 51.

Outline

Stochastic Derivative-free Optimization
Common Approaches
Our Method
Outline of Convergence Proof
Numerical Results

Distributed Multi-agent Optimization
Common Approaches
Our Algorithm
Outline of Convergence Proof
Numerical Results

4 of 51.

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.

5 of 51.

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.

5 of 51.

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.

5 of 51.

The Problem

We analyze the convergence of our method in the stochastic case:

f̄ (x) = f (x) + ε,

where ε is identically distributed with mean 0 and variance σ2 <∞.

This is equivalent to solving:

minimize
x

E
[
f̄ (x)

]
.

6 of 51.

The Problem

We analyze the convergence of our method in the stochastic case:

f̄ (x) = f (x) + ε,

where ε is identically distributed with mean 0 and variance σ2 <∞.

This is equivalent to solving:

minimize
x

E
[
f̄ (x)

]
.

6 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7 of 51.

Strongly Λ-poised Sets

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

8 of 51.

Example (Spall)

Courtesy NASA/JPL-Caltech

9 of 51.

Example

(Spall)

Courtesy NASA/JPL-Caltech
9 of 51.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

10 of 51.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I For Kiefer-Wolfowitz,

Gi(x
k) =

f̄ (xk + ckei)− f̄ (xk − ckei)

2ck

where ei is the ith column of In.

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

10 of 51.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I For Spall’s SPSA,

Gi(x
k) =

f̄ (xk + ckδ
k)− f̄ (xk − ckδ

k)

2ckδki

where δk ∈ Rn is a random perturbation vector

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

10 of 51.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes

(specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

10 of 51.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

10 of 51.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

10 of 51.

Response Surface Methodology

I Developed by the experimental design community.

I Build models using a fixed pattern of points, for example, cubic,
spherical, or orthogonal designs among many others.

I Finding the design that constructs response surfaces approximating
the function without requiring excessive function evaluations can be
difficult for problems where the user has no prior expertise.

11 of 51.

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points
of interest.
I Stochastic approximation modified by Dupuis, Simha (1991)
I Response surface methods modified by Chang et al. (2012)
I UOBYQA modified by Deng, Ferris (2006)
I Nelder-Mead modified by Tomick et al. (1995)
I DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.

12 of 51.

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points
of interest.
I Stochastic approximation modified by Dupuis, Simha (1991)
I Response surface methods modified by Chang et al. (2012)
I UOBYQA modified by Deng, Ferris (2006)
I Nelder-Mead modified by Tomick et al. (1995)
I DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.

12 of 51.

Overview

We therefore desire a method that

1. Adjusts the step size as it progresses

2. Does not use a fixed design of points

3. Does not repeatedly sample points

We’d like the class of possible models to be general.

13 of 51.

Overview

We therefore desire a method that

1. Adjusts the step size as it progresses

2. Does not use a fixed design of points

3. Does not repeatedly sample points

We’d like the class of possible models to be general.

13 of 51.

κ-fully Linear model

Definition
If f ∈ LC and ∃ a vector κ = (κef , κeg) of positive constants such that
I the error between the gradient of the model and the gradient of

the function satisfies

‖∇f (y)−∇m(y)‖ ≤ κeg∆ ∀y ∈ B(x ; ∆),

I the error between the model and the function satisfies

|f (y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x ; ∆),

we say the model is κ-fully linear on B(x ; ∆).

14 of 51.

α-probabilistically κ-fully Linear model

Definition
Let κ = (κef , κeg) be a given vector of constants, and let α ∈ (0, 1).
Let B ⊂ Rn be given. A random model mk generated at the kth
iteration of an algorithm is α-probabilistically κ-fully linear on B if

P
(
mk is a κ-fully linear model of f on B

∣∣Fk−1
)
≥ α,

where Fk−1 denotes the realizations of all the random events for the
first k − 1 iterations.

15 of 51.

Regression Models can be α-prob. κ-fully Linear

Theorem
For a given x ∈ Rn, ∆ > 0, α ∈ (0, 1),
I Y ⊂ B(x ; ∆) is strongly Λ-poised,
I The noise present in f̄ is i.i.d. with mean 0, variance σ2 <∞,
I |Y | ≥ C/∆4,

Then there exist constants κ = (κef , κeg) (independent of ∆ and Y)
such that the linear model m regressing Y is α-probabilistically κ-fully
linear on B(x ; ∆).

16 of 51.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

17 of 51.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
f̄ (xk)− f̄ (xk + sk)

mk(xk)−mk(xk + sk)

17 of 51.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
mk(xk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

17 of 51.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
mk(xk)− m̂k(xk + sk)

mk(xk)−mk(xk + sk)

17 of 51.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
F 0

k − F s
k

mk(xk)−mk(xk + sk)

17 of 51.

One Last Part
For our analysis, we need estimates of f (xk) and f (xk + sk) that are
slightly different than those provided by the model functions.

Let F 0
k and F s

k denote the sequence of estimates of f (xk) and
f (xk + sk).

We need to be able to construct estimates satisfying

P
[∣∣F 0

k − f (xk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣Fk−1
]
< θ

and P
[∣∣F s

k − f (xk + sk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣∣Fk−1

]
< θ,

for any ε > 0 and θ > 0.

18 of 51.

Algorithm 1: A trust region algorithm to minimize a stochastic function

Set k = 0;
Start
Build a α-probabilistically κ-fully linear model mk on B(xk ; ∆k);
Compute sk = arg min

s:‖xk−s‖≤∆k

mk(s);

if mk(sk)−mk(xk + sk) ≥ β∆k then

Calculate ρk =
F 0

k − F s
k

mk(xk)−mk(xk + sk)
;

if ρk ≥ η then
Calculate xk+1 = xk + sk ; ∆k+1 = γinc∆k ;

else
xk+1 = xk ; ∆k+1 = γdec∆k ;

end
else

xk+1 = xk ; ∆k+1 = γdec∆k ;
end
k = k + 1 and go to Start;

Convergence

Under what assumptions will our algorithm converge almost surely to a
first-order stationary point?

I Assumptions on f

I Assumptions on ε

I Assumptions on algorithmic constants

20 of 51.

Convergence

Assumption

On some set Ω ⊆ Rn containing all iterates visited by the algorithm,
I f is Lipschitz continuous
I ∇f is Lipschitz continuous
I f has bounded level sets

Assumption

The additive noise ε observed when computing f̄ is independent and
identically distributed with mean zero and bounded variance σ2.

21 of 51.

Convergence

Assumption

The constants α ∈ (0, 1), γdec ∈ (0, 1), and γinc > 1 satisfy

α ≥ max

1
2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

]
 ,

where
I α is the lower bound on the probability of having a κ-fully linear

model,
I γdec ∈ (0, 1) is the factor by which we decrease the trust region

radius,
I γinc > 1 is the factor by which the trust radius is increased.

If γinc = 2 and γdec = 0.5 → α ≥ 0.9
If γinc = 2 and γdec = 0.9 → α ≥ 0.65

22 of 51.

Convergence

Assumption

The constants α ∈ (0, 1), γdec ∈ (0, 1), and γinc > 1 satisfy

α ≥ max

1
2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

]
 ,

where
I α is the lower bound on the probability of having a κ-fully linear

model,
I γdec ∈ (0, 1) is the factor by which we decrease the trust region

radius,
I γinc > 1 is the factor by which the trust radius is increased.

If γinc = 2 and γdec = 0.5 → α ≥ 0.9
If γinc = 2 and γdec = 0.9 → α ≥ 0.65

22 of 51.

Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f .

I Show the sequence of trust region radii ∆k → 0 almost surely.

I Show if ∆k ever falls below some constant multiple of the model
gradient, ∆k+1 > ∆k with high probability.

I Lastly, show that, the sequence of ratios{∥∥∇f (xk)
∥∥

∆k

}

is bounded above by a nonnegative supermartingale. Since every
nonnegative supermartingale converges almost surely, and ∆k → 0
almost surely, this implies

∥∥∇f (xk)
∥∥→ 0 almost surely.

23 of 51.

Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f .

I Show the sequence of trust region radii ∆k → 0 almost surely.
I Show if ∆k ever falls below some constant multiple of the model

gradient, ∆k+1 > ∆k with high probability.

I Lastly, show that, the sequence of ratios{∥∥∇f (xk)
∥∥

∆k

}

is bounded above by a nonnegative supermartingale. Since every
nonnegative supermartingale converges almost surely, and ∆k → 0
almost surely, this implies

∥∥∇f (xk)
∥∥→ 0 almost surely.

23 of 51.

Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f .

I Show the sequence of trust region radii ∆k → 0 almost surely.
I Show if ∆k ever falls below some constant multiple of the model

gradient, ∆k+1 > ∆k with high probability.
I Lastly, show that, the sequence of ratios{∥∥∇f (xk)

∥∥
∆k

}

is bounded above by a nonnegative supermartingale. Since every
nonnegative supermartingale converges almost surely, and ∆k → 0
almost surely, this implies

∥∥∇f (xk)
∥∥→ 0 almost surely.

23 of 51.

Algorithm 1: A trust region algorithm to minimize a stochastic function

Set k = 0;
Start
Build a α-probabilistically κ-fully linear model mk on B(xk ; ∆k);
Compute sk = arg min

s:‖xk−s‖≤∆k

mk(s);

if mk(sk)−mk(xk + sk) ≥ β∆k then

Calculate ρk =
F 0

k − F s
k

mk(xk)−mk(xk + sk)
;

if ρk ≥ η then
Calculate xk+1 = xk + sk ; ∆k+1 = γinc∆k ;

else
xk+1 = xk ; ∆k+1 = γdec∆k ;

end
else

xk+1 = xk ; ∆k+1 = γdec∆k ;
end
k = k + 1 and go to Start;

Prototype
I mk is a linear regression model on a sample set of (n + 1)Ck

sample points, where Ck is defined by

Ck =

⌈
k

1000

⌉ max
{

n + 1,
⌊

1
∆4

k

⌋}
n + 1

.

The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}

25 of 51.

Prototype
I mk is a linear regression model on a sample set of (n + 1)Ck

sample points, where Ck is defined by

Ck =

⌈
k

1000

⌉ max
{

n + 1,
⌊

1
∆4

k

⌋}
n + 1

.

The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}

I F 0
k = m0

k(xk), where m0
k is a linear regression model using Ck randomly

rotated copies of the set

{xk , xk + 0.5∆ke1, . . . , xk + 0.5∆ken}

25 of 51.

Prototype
I mk is a linear regression model on a sample set of (n + 1)Ck

sample points, where Ck is defined by

Ck =

⌈
k

1000

⌉ max
{

n + 1,
⌊

1
∆4

k

⌋}
n + 1

.

The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}

I F s
k = ms

k(xk), where ms
k is a linear regression model using Ck randomly

rotated copies of the set

{xk + sk , xk + sk + 0.5∆ke1, . . . , xk + sk + 0.5∆ken}

25 of 51.

Problem Set
53 problems of the form:

f (x) =

m∑
i=1

[(1 + σ)Fi (x)]2 ,

where σ ∼ U[−0.1, 0.1].

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .

26 of 51.

Problem Set
53 problems of the form:

f (x) =

m∑
i=1

[(1 + σ)Fi (x)]2 ,

where σ ∼ U[−0.1, 0.1].

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .

26 of 51.

Problem Set
Comments

I We are using the true function value f , not the observed f̄ .
I Since the noise is stochastic, each solver is run 10 times per

problem.

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .

26 of 51.

Performance Profile

Then the performance profile of a solver s ∈ S is the following fraction:

ρs(φ) =
1
|P|

∣∣∣∣{p ∈ P :
tp,s

min {tp,s : s ∈ S} ≤ φ
}∣∣∣∣

I ρs(1): Fraction of P method s solves first.
I limφ→∞ ρs(φ): Fraction of P method s eventually solves.
I ρs(φ): Fraction of P method s solves in under φ times the

evaluations required for the best method.

27 of 51.

Performance Profile

Then the performance profile of a solver s ∈ S is the following fraction:

ρs(φ) =
1
|P|

∣∣∣∣{p ∈ P :
tp,s

min {tp,s : s ∈ S} ≤ φ
}∣∣∣∣

I ρs(1): Fraction of P method s solves first.
I limφ→∞ ρs(φ): Fraction of P method s eventually solves.
I ρs(φ): Fraction of P method s solves in under φ times the

evaluations required for the best method.

27 of 51.

Performance Profile

We compare our prototype against Spall’s versions of Kiefer-Wolfowitz
and SPSA with step sizes as recommended in Sections 6.6 and 7.5.2 of
Spall (2003)

ak =
1

(k + 1 + A)0.602 ck =
1

(k + 1)0.101

where A is one tenth of the total budget of function evaluations.

28 of 51.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−1

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

29 of 51.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

29 of 51.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−3

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

29 of 51.

Another Problem Set
53 problems of the form:

f (x) = σp +

m∑
i=1

[Fi (x)]2 ,

where σp ∼ N
(
0, (0.1∆p)2

)
and ∆p =

∑
i

Fi (x0)−
∑

i

Fi (x∗).

30 of 51.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−1

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

31 of 51.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

31 of 51.

Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

Code
http://people.kth.se/∼jeffreyl/Stochastic/

I Generalizing results to ensure a practical algorithm converges.
I For example, not requiring α-probabilistically κ-fully linear models

every iteration.

I Smartly constructing α-probabilistically κ-fully linear models.

32 of 51.

Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

Code
http://people.kth.se/∼jeffreyl/Stochastic/

I Generalizing results to ensure a practical algorithm converges.
I For example, not requiring α-probabilistically κ-fully linear models

every iteration.

I Smartly constructing α-probabilistically κ-fully linear models.

32 of 51.

Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

Code
http://people.kth.se/∼jeffreyl/Stochastic/

I Generalizing results to ensure a practical algorithm converges.
I For example, not requiring α-probabilistically κ-fully linear models

every iteration.

I Smartly constructing α-probabilistically κ-fully linear models.

32 of 51.

Outline

Stochastic Derivative-free Optimization
Common Approaches
Our Method
Outline of Convergence Proof
Numerical Results

Distributed Multi-agent Optimization
Common Approaches
Our Algorithm
Outline of Convergence Proof
Numerical Results

33 of 51.

Contents

Stochastic Derivative-free Optimization
Common Approaches
Our Method
Outline of Convergence Proof
Numerical Results

Distributed Multi-agent Optimization
Common Approaches
Our Algorithm
Outline of Convergence Proof
Numerical Results

Joint work with Euhanna Ghadimi and Mikael Johansson

34 of 51.

Motivation

Credit: RoboBees Project, Harvard University

35 of 51.

Motivation

Credit: RoboBees Project, Harvard University

35 of 51.

Motivation

Credit: RoboBees Project, Harvard University

35 of 51.

Motivation

Credit: RoboBees Project, Harvard University

35 of 51.

Problem Statement

minimize
x

E

[
N∑

i=1

f̄i (x)

]
subject to Ax ≤ b

x ∈ X

I Each agent has objective fi (x) which can only be observed with
additive noise f̄i (x) = fi (x) + ε

I Each fi is convex
I ε has zero mean and finite variance
I X is an is a nonempty, closed, convex subset of Rn

36 of 51.

Algorithm
Goal
Agents connected by a network cooperatively minimize the global objec-
tive though they only have knowledge of their individual objectives (and
shared information from the network).

I Aim: Distributed Multi-agent Derivative-free Optimization
I At iteration j , agent i builds a model mi

j using observed values of f̄i .
I Communicate where they are going to their neighbors in the

network.
I Take the information from their neighbors for iteration j + 1.

I Today: Distributed Multi-agent Optimization with Inexact
Subproblems

37 of 51.

Algorithm
Goal
Agents connected by a network cooperatively minimize the global objec-
tive though they only have knowledge of their individual objectives (and
shared information from the network).

I Aim: Distributed Multi-agent Derivative-free Optimization
I At iteration j , agent i builds a model mi

j using observed values of f̄i .
I Communicate where they are going to their neighbors in the

network.
I Take the information from their neighbors for iteration j + 1.

I Today: Distributed Multi-agent Optimization with Inexact
Subproblems

37 of 51.

Problem Statement

minimize
x

∑
i

fi (x)

minimize
x

∑
i

fi (xi)

subject to xi = xj ∀(i , j) ∈ E

38 of 51.

Problem Statement

minimize
x

f (x)

subject to Ax ≤ b

x ∈ X

or

minimize
x

f (x) + g(z)

subject to Ax + Bz = c

39 of 51.

Previous Methods
Lagrangian dual decomposition methods (Nedić, Ozdaglar, Johansson. . .)

I Challenge for using the dual when constructing models:

Primal Problem Dual Problem

Model of Primal Problem Dual of Model

Global

Local ??

Global

40 of 51.

Previous Methods
Primal Methods using Consensus (Tsitsiklis, Bertsekas)

I Can be quite slow

Iterates have the form:

xk+1
i =

N∑
j=1

wijxk
j − adk

i

where a is a step size, dk
i is an element of the subdifferential of fi at xk

i .

f (y k) ≤ f ∗ + aL2C1 +
NLBC2

k

N∑
j=1

∥∥x0
j

∥∥+
N

2ak

(
dist(y0,X ∗) + aL

)2
Nedić, Ozdaglar (2009)

41 of 51.

Previous Methods
Primal Methods using Consensus (Tsitsiklis, Bertsekas)

I Can be quite slow

Iterates have the form:

xk+1
i =

N∑
j=1

wijxk
j − adk

i

where a is a step size, dk
i is an element of the subdifferential of fi at xk

i .

f (y k) ≤ f ∗ + aL2C1 +
NLBC2

k

N∑
j=1

∥∥x0
j

∥∥+
N

2ak

(
dist(y0,X ∗) + aL

)2
Nedić, Ozdaglar (2009)

41 of 51.

Previous Methods
Alternating Direction Method of Multipliers (ADMM)
I Developed in the 1970s (Hestenes, Powell, Eckstein)

I Roots in the 1950s (Dantzig, Wolfe, Benders)

I Equivalent or similar to many other algorithms

I Douglas-Rachford splitting
I Spingarn’s method of partial inverses
I Dykstra’s alternating projections
I Proximal methods
I Bregman iterative methods
I More. . .

42 of 51.

Previous Methods
Alternating Direction Method of Multipliers (ADMM)
I Developed in the 1970s (Hestenes, Powell, Eckstein)

I Roots in the 1950s (Dantzig, Wolfe, Benders)

I Equivalent or similar to many other algorithms
I Douglas-Rachford splitting
I Spingarn’s method of partial inverses
I Dykstra’s alternating projections
I Proximal methods
I Bregman iterative methods
I More. . .

42 of 51.

ADMM

minimize
x

f (x) + g(z)

subject to Ax + Bz = c
(1)

has augmented Lagrangian

Lρ(x , z , µ) = f (x) + g(z) + µT (Ax + Bz − c) +
ρ

2
‖Ax + Bz − c‖22

Algorithm 2: Traditional ADMM

Pick initial values z0, µ0, ρ;
for k = 0, 1, . . . do

xk+1 = argminx Lρ(x , zk , µk);
zk+1 = argminz Lρ(xk+1, z , µk);
µk+1 = µk + ρ

(
Axk+1 + Bzk+1 − c

)
;

end

43 of 51.

ADMM

minimize
x

f (x) + g(z)

subject to Ax + Bz = c
(1)

has augmented Lagrangian

Lρ(x , z , µ) = f (x) + g(z) + µT (Ax + Bz − c) +
ρ

2
‖Ax + Bz − c‖22

Algorithm 2: Traditional ADMM

Pick initial values z0, µ0, ρ;
for k = 0, 1, . . . do

xk+1 = argminx Lρ(x , zk , µk);
zk+1 = argminz Lρ(xk+1, z , µk);
µk+1 = µk + ρ

(
Axk+1 + Bzk+1 − c

)
;

end

43 of 51.

Previous inexact ADMM methods

Algorithm 3: Deng, Yin (2013) Generalized ADMM

Pick Q � 0 and symmetric P, z0, µ0, ρ;
for k = 0, 1, . . . do

xk+1 = argminx Lρ(x , zk , µk) + 1
2 (x − xk)P(x − xk);

zk+1 = argminz Lρ(xk+1, z , µk) + 1
2 (z − zk)Q(z − zk) ;

µk+1 = µk + ρ
(
Axk+1 + Bzk+1 − c

)
;

end

I Fixed matrices P and Q
I Still dealing with argminx f

44 of 51.

Previous inexact ADMM methods

Algorithm 3: Deng, Yin (2013) Generalized ADMM

Pick Q � 0 and symmetric P, z0, µ0, ρ;
for k = 0, 1, . . . do

xk+1 = argminx Lρ(x , zk , µk) + 1
2 (x − xk)P(x − xk);

zk+1 = argminz Lρ(xk+1, z , µk) + 1
2 (z − zk)Q(z − zk) ;

µk+1 = µk + ρ
(
Axk+1 + Bzk+1 − c

)
;

end

I Fixed matrices P and Q
I Still dealing with argminx f

44 of 51.

Our approach
Algorithm 4: Our modification of ADMM

Pick initial values z0, µ0, ρ;
for k = 0, 1, 2, . . . do

xk+1 =
argminx f (xk) +∇x f (xk)T (x − xk) + 1

2 (x − xk)T∇2
x f (xk)(x − xk)

+ (µk)T (Ax + Bzk − c) + ρ
2

∥∥Ax + Bzk − c
∥∥;

zk+1 = argminz Lρ(xk+1, z , µk);
µk+1 = µk + ρ

(
Axk+1 + Bzk+1 − c

)
;

end

Assumption

Assume f is convex and twice continuously differentiable in the region
of interest so ∇2f (xk) is well-defined.

45 of 51.

Our approach
Algorithm 4: Our modification of ADMM

Pick initial values z0, µ0, ρ;
for k = 0, 1, 2, . . . do

xk+1 =
argminx f (xk) +∇x f (xk)T (x − xk) + 1

2 (x − xk)T∇2
x f (xk)(x − xk)

+ (µk)T (Ax + Bzk − c) + ρ
2

∥∥Ax + Bzk − c
∥∥;

zk+1 = argminz Lρ(xk+1, z , µk);
µk+1 = µk + ρ

(
Axk+1 + Bzk+1 − c

)
;

end

Assumption

Assume f is convex and twice continuously differentiable in the region
of interest so ∇2f (xk) is well-defined.

45 of 51.

Convergence

Assumption

There exists a saddle point to problem (1). In other words, there exists
points x∗, z∗, µ∗ satisfying

∇zg(z∗) + BTµ∗ = 0

∇x f (x∗) + ATµ∗ = 0

Ax∗ + Bz∗ = c

Define ‖x‖2A = xTAx and

y ∗ =

 x∗

z∗

µ∗

 , y k =

 xk

zk

µk

 ,Hk =

∇2
x f (xk) + ρATA 0 0

0 ρI 0
0 0 1

ρ I



46 of 51.

Convergence

Lemma
Iterates generated by our algorithm satisfy∥∥y k − y ∗

∥∥2
Hk
−
∥∥y k+1 − y ∗

∥∥2
Hk
≥
∥∥xk − xk+1

∥∥2
(∇2

x f (xk)+ρAT A− 1
β
AT A)

+ (
1
ρ
− β)

∥∥µk − µk+1
∥∥2

for all β > 0.

I This shows y k converges to y ∗ if ∇2f (xk) � 0.
I This shows y k converges to some ȳ if ∇2f (xk) � 0.

47 of 51.

Convergence

Lemma
Iterates generated by our algorithm satisfy∥∥y k − y ∗

∥∥2
Hk
−
∥∥y k+1 − y ∗

∥∥2
Hk
≥
∥∥xk − xk+1

∥∥2
(∇2

x f (xk)+ρAT A− 1
β
AT A)

+ (
1
ρ
− β)

∥∥µk − µk+1
∥∥2

for all β > 0.

I This shows y k converges to y ∗ if ∇2f (xk) � 0.

I This shows y k converges to some ȳ if ∇2f (xk) � 0.

47 of 51.

Convergence

Lemma
Iterates generated by our algorithm satisfy∥∥y k − y ∗

∥∥2
Hk
−
∥∥y k+1 − y ∗

∥∥2
Hk
≥
∥∥xk − xk+1

∥∥2
(∇2

x f (xk)+ρAT A− 1
β
AT A)

+ (
1
ρ
− β)

∥∥µk − µk+1
∥∥2

for all β > 0.

I This shows y k converges to y ∗ if ∇2f (xk) � 0.
I This shows y k converges to some ȳ if ∇2f (xk) � 0.

47 of 51.

Example: General `1 Regularized Loss Minimization
Consider the problem

minimize l(x) + λ ‖x‖1

where l is any convex loss function. In ADDM form, we can write this:

minimize
x

l(x) + g(z)

subject to x − z = 0

where g(z) = ‖z‖1.

I Instead of solving the x-update exactly, solving the quadratic
approximation can be faster.

48 of 51.

Example: General `1 Regularized Loss Minimization
Consider the problem

minimize l(x) + λ ‖x‖1

where l is any convex loss function. In ADDM form, we can write this:

minimize
x

l(x) + g(z)

subject to x − z = 0

where g(z) = ‖z‖1.

I Instead of solving the x-update exactly, solving the quadratic
approximation can be faster.

48 of 51.

Results

minimize
∑(

log
(
−bi (aT

i x)
))

+ λ ‖x‖1
where ai are rows in a feature matrix A and b is a response vector.

I Boyd’s exact minimization (for a large problem) takes a total of
4928 iterations (summing over all agents)

I Solving only a single Newton step takes 1700 iterations

49 of 51.

Concerns and Assumptions
Concerns
I Time varying network
I Asynchronous updates
I Delays in communication
I Nonconvex local objectives

Assumptions
I Constant network
I Synchronized updates
I No delays in communication
I Convex local objectives

50 of 51.

Concerns and Assumptions
Concerns
I Time varying network
I Asynchronous updates
I Delays in communication
I Nonconvex local objectives

Assumptions
I Constant network
I Synchronized updates
I No delays in communication
I Convex local objectives

50 of 51.

Thanks

Questions?

jeffreyl@kth.se

51 of 51.

	Stochastic Derivative-free Optimization
	Common Approaches
	Our Method
	Outline of Convergence Proof
	Numerical Results

	Distributed Multi-agent Optimization
	Common Approaches
	Our Algorithm
	Outline of Convergence Proof
	Numerical Results

